LANL Syllabus/Schedule

Description

This training course provides an overview of how to perform nuclear criticality safety (NCS) evaluations (NCSEs) in accordance with the guidance in DOE-STD-3007, applicable ANSI/ANS series 8 standards, and DOE Orders and Standards.

The course provides a review of NCS fundamentals, lessons-learned from selected process criticality accidents, an overview of ANSI/ANS-8 standards, and interpretive guidance from DOE with respect to relevant DOE Orders and Standards. Each student is assigned to an evaluation team to evaluate a fissile material process at the LANL plutonium facility, PF-4.

Course Duration

5 days

Objectives

- Review basic NCS fundamentals, process criticality lessons-learned, and history that is important in NCS evaluation development,
- Review and understand the ANSI/ANS-8 series standards and how they are used in the development of NCS evaluations,
- Review and understand the DOE Orders and Standards that are used in the development of NCS evaluations.
- Learn about the evaluation process with respect to roles and responsibilities, conducting effective walkdowns, defining normal and credible abnormal conditions, etc., and
- Work with a small team in the development of a criticality safety evaluation for a fissile material operation at the LANL plutonium facility using the principles and guidance taught in the class modules.

Prerequisites

The course attendees will benefit from have completed reading and understanding the Nuclear Criticality Safety Engineer Training Modules (1-15) available at http://ncsc.llnl.gov/trainingMain.html. The attendees shall also have a good background in reactors physics, knowledge of NCS handbooks (LA-10860-MS, LA-12808, etc.), and some practical knowledge of NCS hand calculation methods that will be useful during the evaluation development sessions.

Target Audience

The course is primarily targeted for professionals just entering the criticality safety discipline. It is also designed for current criticality safety engineers seeking to maintain technical capabilities.

Completion Requirements

Attendees must complete the week-long training session and have satisfactorily completed the inclass evaluation and presentation of results.

Instructors

Doug Bowen, Shean Monahan, Jim Baker, Mark Mitchell & Chuck Harmon

Sandia Syllabus/Schedule

SNL SPRF/CX Hands-On Critical Experiment Training Course Basic Schedule

Role course is intended to play in overall training & qualification of <u>nuclear criticality safety engineer ([N]CSE) personnel</u>
Design for flexibility; can be tailored for audiences of operations and/or management personnel, as well non-DOE and non-U.S. audiences

Monday	Tuesday	Wednesday	Thursday	Friday
Introductions BLOCK 1 Fundamentals	BLOCK 5 Hands On #1: Experiment – Fuel Approach to Critical	BLOCK 5 Hands On #2: Experiment – Water-Height Approach-to- Critical	BLOCK 5 Hands On #3: Demonstration – Fuel Separation ("The Slot")	BLOCK 6 Results BLOCK 7 Benchmarking
		LUNCH		
Intersperse Selected BLOCK 2 Critical- Measurement Accidents BLOCK 3 Critical- Experiment Design	Intersperse BLOCK 1 Fundamentals BLOCK 2 Critical- Measurement Accidents BLOCK 3 Critical- Experiment Design BLOCK 4 Critical- Experiment Experiment Experiment Experiment Experiment Experiment Execution	Selected BLOCK 2 Critical- Measurement Accidents BLOCK 3 Critical- Experiment Design BLOCK 4 Critical- Experiment Experiment Experiment	(DEMO continued) Intersperse BLOCK 2 Critical- Measurement Accidents BLOCK 4 Critical- Experiment Execution	

SNL SPRF/CX Hands-On Critical Experiment Training Course

Topic Blocks			
1.	Fundamentals		
2.	Critical-Experiment Accidents		
3.	Critical-Experiment Design		
4.	Critical-Experiment Execution		
5.	Hands-On Critical Experiments		
6.	Analysis of Experiment Results		
7.	Critical Experiment Benchmarking		

Topic Blocks

1. Fundamentals

- a. Fission
- b. Chain reactions
- c. Multiplication and reactivity
- d. Parameters affecting criticality
- e. Critical experiments and parameters
- f. Buckling-conversion method for hand calculations
- g. Criticality safety data and limits
- h. Subcritical multiplication theory
- i. Multiplication factor "continuum"
 - i. Subcritical
 - ii. Delayed critical
 - iii. Delayed supercritical
 - iv. Prompt & prompt supercritical

2. Critical-Experiment Accidents

- a. Accidents and how they affect Critical Experiments
 - i. Critical assembly/measurement accidents and lessons
 - ii. Application of lessons in Standard ANSI/ANS-1 Conduct of Critical Experiments [See also #6 & #7 below]

3. Critical-Experiment Design

SNL SPRF/CX Critical-Experiment Design

- a. ANS-1 implications
 - i. Administration
 - ii. Design
- b. Design to replicate application
 - i. Light-water reactors
 - ii. LWR fuel depeletion/burnup
- c. SNL critical experiments
 - i. Burnup-Credit (BUCCX)
- d. Seven-Percent (7uPCX)
- 4. Critical-Experiment Execution

Topic Blocks

- a. Nuclear Instrumentation
- b. Approach-to-Critical Measurements (pactice)
- c. Conduct of critical-measurement operations
- d. Practical considerations

5. Hands-On Critical Experiments

- a. SNL Approach on Fuel Load
 - Mass
 - Absorption
- b. SNL Approach on Water Height
 - Moderation
 - Geometry
 - Reflection
- c. SNL Moderation Effects
 - Mass
 - Moderation
 - Interaction

[Consider use of videos of previous SNL, LANL, and/ or Livermore hands-on exercises that the audience will not likely have an opportunity to see live]

6. Analysis of Experiment Results

- a. Perform 1/M graphing and extrapolation
- b. Explain of impact of spacing, reflection, and poisons on multiplication
- c. Compare measured data to published data and computer models
- d. Compare the relative worths of parameter changes

1. Critical Experiment Benchmarking

- a. ICSBEP
- b. Anatomy of an Evaluation
- c. Evaluation review process
- d. Modeling a benchmark practical use of an evaluation [Walk-through of SNL benchmark reports for BUCCX and 7uPCX (in progress)]
 - i. Physical
 - ii. Computer-code

DAF/NCERC Syllabus/Schedule

DAF/NCERC Hands-on T&EP Course Schedule

Monday @ Nev	vada Site Facility (NSF)	
10:00	Meet at NSF in North Las Vegas	
	(Room TBD) to take care of any last	
	minute DAF access, training issues,	
	or any other logistical issues for the	
	scheduled events for the week for	
	participants	
11:30	Lunch	
13:15	NSF Great Basin Conference Room	
	(not sure who is invited to attend)	
	Defense Program Awards of	
	Excellence Ceremony in Great Basin	
	Conference Room	
15:00	NSF Great Basin Conference Room	
	Don Cook recognizes Criticality	
	Experiment Facility (CEF) Team and	
	announces name change	
16:00	End of Day	

\$30 in cash will be collected from each student at NSO to cover box lunch costs at the DAF for Tuesday - Thursday (see menu ordering and selection below)

Tuesday @ DAF	AF Entry Guard Station (EGS)		
7:17	DAF EGS		
7:45	Planet Handstack Demo		
	1. ANS 8 standards versus ANS 1 Standards		
	2. Two Person rule as an administrative control		
	3. Definition of "unit" for these operations		
	4. Defining a "safe" starting point		
	5. 1/M control in approach to critical		
	6. Prediction of critical configuration		
	7. Half-way rule wrt handstack limit		
	8. ³ / ₄ rule wrt handstack limit		
	9. Importance of proper source and detector geometry		
	10. Criticality safety impact of Process Changes in the work area		
	11. Criticality control selection criteria		
	12. Role of Judgment in selection of credible upsets and conditions13. Criticality versus Conduct of Operations		
	14. Effect of moderators, reflectors, and precipitation (H/U) on critical mass		
	15. · Utility of hand calculations		
11:45	Lunch with Hand Calculational		
	Methods Lecture (Part 1)		
13:00	Planet Approach to Critical/Critical Operations		
17.00	(cont.)		
17:00	End of Day		

Wednesday @ DAF EGS		
7:15	DAF EGS	
7:45	TACS Demo Part I	
11:45	Lunch with Hand Calculational Methods Lecture (Part II)	

Thursday @ D	OAF EGS		
7:15	DAF EGS		
7:45	LANL Advanced Hands on Demo		
	1. Understand when infinite reflector thickness is achieved		
	2. Demonstrate the geometric importance of reflector additions		
	3. Understand the sensitivity to different materials of fast versus thermal systems		
	(absorption		
	4. versus scattering)		
	5. Measure the reactivity impact of human hands compared to poly shell thickness		
	6. Measure the reactivity impact of human bodies compared to poly shell thickness		
11:45	Lunch with Experiment Criticality		
	Accidents Lecture		
13:00	Course Attendee / Feedback		
17:00	End of Day		

Friday @ NSF		
8:30 AM	Three Site Course Critique	

Menu Selection needs to be provided Ms. Kimberly R Scott (kimberlyr@lanl.gov) no later than One week before the class

NNSS Box Lunch Menu
Consists of a Sandwich,
1 Canned Soda or Bottled Water,
1 Bag of Chips, and
1 Pack of Grandma's Cookies
If Desired, Sandwich Can Be Replaced
With a Large Salad

Please Mark Your Choice For Each Day:

Tuesday	Wednesday	Thursday